Neural Transformation Learning for Anomaly Detection Beyond Images
link to abstract: https://arxiv.org/abs/2103.16440
1. Introduction
Deep 비정상 탐지를 위한 neural transformation 학습이며 자기지도 학습 방법이다.
Key Idea: Transformation을 거친 데이터를 semantic space로 임베딩 시킨다. Transform 된 데이터는 원본 데이터와 비슷함과 동시에 각 transformation들은 매우 달라 특이점으로 구분 가능하다.
이 모델의 2개의 구성 요소: 1) 정해진 갯수의 학습 가능한 transformation들, 그리고 2) encoder 모델.
2. Related Works
2-1.
- Deep AD (e.g. deep AE variants, deep one-class classification, deep generative models, outlier exposure):
- self-supervised learning:
- contrastive representation learning:
- learning data augmentation schemes:
NeuTraL AD
- neural transformation learning for anomaly detection
- deep anomaly detection method based on contrastive learning for general data types
- components: a set of learnable transformations and an encoder. both jointly trained on a deterministic contrastive loss (DCL)
- purposes of objective:
- learnable data transformations:
- deterministic contrastive loss (DCL):
'Deep Learning > Anomaly Detection' 카테고리의 다른 글
[Paper Review] Time Series Anomaly Detection using Temporal Hierarchical One-Class (THOC) Network (0) | 2022.01.23 |
---|---|
[Python] Deep SVDD DataLoader on Time Series Data (0) | 2022.01.23 |
Anomaly Detection Paper 모음 (0) | 2022.01.23 |
[Paper Review] DROCC: Deep Robust One-Class Classification (0) | 2022.01.23 |
[Paper Review] Deep SVDD (Deep One-Class Classification) (0) | 2022.01.23 |